PHYSICAL REVIEW E

VOLUME 48, NUMBER 1

JULY 1993

Equivalence of thermostatted nonlinear responses

Denis J. Evans and Sten Sarman
Research School of Chemistry, Australian National University, Canberra,
Australian Capital Territory 0200, Australia
(Received 26 October 1992)

In this paper we show that, in general, both steady-state averages and time correlation functions com-
puted under Gaussian isokinetic dynamics, Gaussian isoenergetic dynamics, or Nosé-Hoover thermos-
tats are all equal. This result is true even in the far-from-equilibrium nonlinear regime as long as the sys-
tem is mixing and the quantities involved are local and not trivially related to constants of the motion.
We provide computer-simulation results that support this theoretical prediction.
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I. INTRODUCTION

Consider an N-particle system of structureless particles
with coordinates, q;,q,,..., and peculiar momenta,
PP --., and a potential energy, ®(q;,q,,...). In
1984 we established [1] that the linear thermostatted
response of a phase function B(I')=B(qq,,...,
P1»,P»- - - ), to an external perturbing field F, can usually
[2] be written in a Kubo form,

lim (B(z,))=—8 [ 'dx(J(0)B(s,))F, , ()
Fe—>0 0

where the dissipative flux J is defined in terms of the adia-
batic (i.e., unthermostatted) derivative of the internal en-
ergy, Hy=3,p;/2m +®(q;,qp,- - - )

ad

Ho | J(T)F
—~| =—J(DF,, @)

and where B=1/ky T is the Boltzmann factor for the en-
semble whose average is denoted { ).

In Eq. (1) the subscript ¢ for the time arguments #,s
denotes the form of the thermostat used to extract the
heat produced in the system by the dissipative external
field. The most common reversible, deterministic ther-
mostats that have been studied include the following [3]:
the Gaussian isokinetic thermostat (¢=K), Gaussian
isoenergetic thermostat (:=E), and the usual Nosé-
Hoover thermostat (¢:=NHK), which employs an in-
tegral feedback mechanism based on the peculiar kinetic
energy. In this paper we shall also introduce a variant of
the Nosé-Hoover thermostat that is based on an internal
energy feedback equation (¢:=NHE). In Eq. (1) the zero
subscript for the time argument s denotes that the exter-
nal field F, is set to zero. If there is no zero subscript on
a time argument [as is the case for ¢ in (1)], it is under-
stood that the time generation proceeds in the presence of
the external field F,.

The equations of motion for each of these thermostats
(=K, E, NHK, and NHE) can be written in the form [3]

q;=p;/m+CF,,
p;=F,+D;F,—a,p; ,

(3)
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where it is assumed that the momenta p; are peculiar and
are measured with respect to the local streaming velocity
of the position of particle i. The forms of these equations
of motion can be derived from Gauss’s Principle of Least
Constraint [3]. For +=K, E, NHK, and NHE all that
changes is the expression for the thermostatting multi-
plier a. In the two cases we shall give most detailed con-
sideration to, t=K and E, we have

N
2 Fi'pi/m +F6Di 'pi/m
ap =" = @)
S pi/m

i=1

and

N
Fe' E D,'pi/m '_FiC,'

i=1

N
3 pi/m
i=1
In words, Eq. (1) simply states that the thermostatted
linear response (limF, —0) of a phase function B is relat-
ed to the time integral of a thermostatted equilibrium
(F,=0) time correlation function which correlates the
phase function B to the dissipative flux which is generat-
ed by the perturbing external field.

In 1983 we showed [4] that in the thermodynamic lim-
it, equilibrium time correlation functions evaluated under
Gaussian isothermal dynamics are identical to the corre-
sponding equilibrium time correlation functions evalu-
ated under Newtonian dynamics. Later in the same year
Evans and Holian [5] showed that Nosé-Hoover thermo-
statted dynamics (NHK) also leaves equilibrium time
correlation functions unchanged in the thermodynamic
limit.

When this equivalence of thermostatted equilibrium
time correlation functions is combined with the results of
thermostatted linear-response theory summarized in (1),
we observe that at the same thermodynamic state point
the linear thermostatted response is independent of the
nature of the thermostat. These results, however, only
relate to the linear-response regime where F,—0. From
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a practical point of view it has been known for some time
that even in the nonlinear regime computed averages and
time correlation functions are remarkably insensitive to
the form of the thermostat.

Recently Liem, Brown, and Clarke [6] performed accu-
rate comparisons of the viscosity and the nonequilibrium
equation of state of systems which are thermostatted
homogeneously (as described above) with corresponding
results for systems which are thermostatted by conduc-
tion to thermal boundaries. They compared the results of
homogeneous thermostatted shear flow with results from
simulations of Couette flow between atomistically
modeled walls. They found that within the estimated sta-
tistical uncertainties of their calculations (£2%), the
homogeneously sheared and thermostatted results agreed
with the inhomogeneous simulations. It is worth point-
ing out that these comparisons were carried out reason-
ably far from the linear regime. In fact, at their highest
shear rates the viscosity is some 20% smaller than the ex-
trapolated zero shear value.

Somewhat earlier, in 1985 we presented [7] a compar-
ison of soft-sphere viscosities obtained homogeneously
using Gaussian isothermal, Gaussian isoenergetic, and
Nosé-Hoover thermostats. Again, all of these results
agreed with each other within estimated uncertainties
(+2%). This comparison was carried out far into the
nonlinear regime where the viscosity is 30% smaller than
its limiting Newtonian value.

In the present paper we sketch a proof of the thermo-
stat independence of both steady-state averages and
steady-state time correlation functions in the nonlinear
regime. We also provide numerical data that support
these predictions.

iL. t . .
i iL .t t iLot, .
e X=¢F +f dtie FlidLe
0

Ly (1—1,)

II. THEORY

A. Steady-state averages

Consider two noncommuting operators A and B. A
Dyson equation [3] giving an exact relation between the
resolvents of these operators can be written as

e("4+$)t=e"4'+ fotdtleﬂrlBe(ﬂ+$)(t~tl) ) (6)
We now choose
"A+B=iLg, A=iLyg, (7)

where iLy is the Gaussian isokinetic Liouvillean and iLy
the Gaussian isoenergetic p Liouvillean, which describes
the thermostatted and field-dependent motion of an arbi-
trary phase function B,

B(L(:,)=¢"“B(I'(0)), :=K,E, @)

where I'=(qy,...,qy, Py, -..,Py).- From Eq. (3) the
Liouville operators can be written as [3]
. 0

i[L =1 -—— . 9

l 3 [ ar ( )
The only difference between the isokinetic and the isoen-
ergetic Liouvilleans is in the form of the thermostatting
phase function a,

N

i=1

Recursive substitution into the Dyson equation (6)
gives

iLt t iLyt, . iLy(t—t,) = iLt. . il (t—t —t))
=e E +f0dt1e ESL [e B +f dtye E%i8Le X ! 72
0

iLyt t il t, . iL(t—t,) t t—t it . iLt, . iL(t—t,—t,)
=" E +f0dt,e' BlisLe B T +f0dt,f0 dtye ®isLe E2isLe BTN T4 (11)

It is frequently convenient to use the short-hand notation

(3]

where
eiLK’E=», e"®'=_, and iSL=A , (13)

and where arrow chains denote convolutions.

Without loss of generality, consider the difference be-
tween the steady-state averages of an arbitrary extensive
phase function A(T"). We assume that the two systems
(i.e., the isokinetic and isoenergetic thermostatted sys-
tems) are at the same nonequilibrium state point. To en-
sure this, we assume the two systems have the same
values for the number of particles N, the volume V, the

f

external field F,, and the same steady-state-average value
of the phase-space compression factor [3] A,

%lnf(I‘,t)E—A(I‘(t)). (14)

For E, K, NHK, and NHE thermostatted systems this
implies that the average values of the thermostatting

multipliers are identical, since for these systems
A(t,)=—3Nal(t,). So in particular for isoenergetic and
isokinetic thermostatted systems we have

The difference in the nonlinear thermostatted response
of a canonical ensemble average of an arbitrary local, ex-
tensive phase function 4(I) is therefore



48 EQUIVALENCE OF THERMOSTATTED NONLINEAR RESPONSES 67

(A(tK))—(A(tE))=fdl-\fc(r)(eiLKt_eiLEt)A

= [ar )| [ die" " isLe

+f0'dt1for_1

(A local, extensive phase function A(T)
lim|q; —q;|—>®(4;4;)=0(3,7].)

lLE 1

can by definition be written as a

iLgt iLg(t—1t;)

isLe B2 isLe™E T T Ll | 4 (16)

sum, N ,4,(T') and

It is convenient to define a new phase function B’(¢) in the following manner:

B'()= 3 p;- —a—B(t) an
From this deﬁnltlon 1t is clear [3], that if B is extensive, so too is B’. From Eq. (10)
isLe™" ™ 4 = —5a 2 p. aa Altg—sg)=—8aA'(tg—sg) . (18)
Substituting this result into (16), we see that
(A(15))—( Altg))= [dT f,(T) —fo’dtle"LE"aaA'(t—tl)
t = iLgt, , e, .
+f0dt,f0 dtye E'8ada(tg,) A" (tg —tg;) , (19)
where A" is defined recursively in terms of 6 and A4’,
Sa’(SEz)A“(tE——tEl )E E p,-a—?)—Sa(th)A'(tE"‘tEl) . (20)
From (20) and (19) we see that
t , t ! )
(A(tK)>—(A(tE)>=—fodt1<8a(tE1)A (tE))-i-fodtlfo dt,(8a(tg)8a (tgy +1g ) A" (tg))+ -+ . (21)

Now there are two very important properties of the primed variables. Firstly, as already mentioned, if 4 is extensive,

so too are A', A",. ...

Likewise a, a’, and '’ are local, intensive variables. Secondly, in the long-time limit 4’ and

A'" and 8a, 6a’, and 8a’’ have zero means. This can be proved quite easily.

From its definition (17) we see that

(B(1,))= [dT £.() S py-=—B(1)=— [dT B(1)'S, 2 [p.f.(D)]
i api i a i

=—3N(B(t,))— [dT B(t 2p. ——f ()= —3N(B(t,))+— de‘B(t)Ep,zfc(I‘)

=2B{B(¢t,)AK(0)) .

Assuming that the variable B is not a trivial function of

either of the constants of motion, the kinetic or the inter-

nal energy, and assuming that the system is mixing [8],
lim (B’(¢,))=0, =E,K. (23)

t— ©
Similarly, one can show that

lim (8a’'(t,)A"(t,)=0. (24)

t,ty—>

Returning to Eq. (21) we see that in the long-time limit,
the difference in averages of 4 computed under isoener-
getic and isokinetic thermostats can be expressed as time
integrals of correlation functions of zero-mean variables.
Further, since A’, A"',. . . are extensive while 8a,8a’,. . .
are intensive, it follows that in the long-time limit the

(22)

[

difference { A(tx)) —({ A(tg)) is intensive and therefore
becomes insignificant compared to { 4(zg)) in the large
system limit. (In deriving this result we use the fact that
the average of products of zero-mean, local, extensive
variables is itself extensive—see p. 4071 of Ref. [7])..

B. Steady-state averages

We now consider the thermostat dependence of
steady-state time correlation functions,
lim,_mfdl"ch(t)B(t-i-s), of extensive phase func-
tions A and B. Without loss of generality, we assume
that under the isokinetic thermostat the steady-state
means of both 4 and B are zero. Using the Dyson equa-
tion (6) we see that
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(A(tx)B(tg+r )= [dT f ("% a)e"*"""B)

= [dTf[({>+—>As+---}), 4]
X[({->+—>A—>+-"-}),+,B],

(25)
J

where the indices to the parentheses around the Dyson
expanded propagators denote the total time each expan-
sion works through. The operators within each of the
two expansions t and t+7 only operate on the phase
functions A4 and B, respectively. Writing out the first few
terms of the Dyson equation expansion, we see that

(A(1g)B(tg +7¢ ) = A(tg)B(tg+75) + [dT f[(>A—), 41[(—),B]+ [dT £ [(—), A][(—A—),,,B]
+ [dr f[(-A—), A(—A—), B]+ - . (26)

We note that from the results of Sec. II A, since 4 and B have zero steady-state means under the isokinetic thermostat
they also must be zero-mean variables under the isoenergetic thermostat.
We now consider the second term on the right-hand side of (26):

de‘fc[(—>A—>)tA][(-»),+TB]=f0t+Tds [dT f.B(tg+rge EidLe

iLg(t—s)

A

=—f0'+’dsfdrch(tE+TE)8a(sE)A'(tE)=0(1), as tg—> o . 27)

In deriving the last equality we have again assumed the system is mixing [8] and that there is no trivial relation between
the variables B, 8a, and A4’ and either of the constants of the motion. Clearly, the third term on the right-hand side of
(26) is also O(1). The fourth term on the right-hand side of (26) can be expanded as

iLg(t—s t—s,

fdl"fc[(—+A-—>),A][(—»A—»)HTB]:fotdslf0t+rds2fdl‘fc(eiLEs’i8Le Vg e B0 B T p)
t t+7 , ,
=f0ds,f0 ds, [ dT f.8a(s ) A" (tg)8a(s,5)B (tg+7g)
+7
=f0tds,f0t ds,(8a(s,g)8als,z) A'(tg)B (tg+7E))
=O0(1/N) as tg,Tg— o . (28)
[
It is clear that the same methods can be used to con-  i8L =iLyyx —iLg
clude that higher-order terms in (26) are at least of O(1) 3 3
and can therefore be ignored in the large system limit. =—(angx —g) D, p,»'-ép——dNHK—aa— . (31)
i NHK

This concludes our proof of the equivalence of steady-
state time correlation functions computed under Gauss-
ian isoenergetic and Gaussian isothermal thermostats.

C. Nosé-Hoover thermostats

1t is straightforward to extend the proof in Sec. I A to
encompass the equivalence of Nosé-Hoover (NHK and
NHE) averages as well. The equations of motion for the
NHK and NHE thermostats are identical to (3) with the
addition that the thermostatting multiplier must be con-
sidered as an additional phase-space variable, since it
satisfies an equation of motion. For the usual NHK ther-
mostat we have, instead of (4) or (5),

2/2
2pi/2m / 2, (29)

3NkgT /2
while for the energy equivalent, NHE, we have

H,
D 1]/72. (30)

Thus, 6 N-dimensional phase space must be augmented to
at least 6N + 1 dimensions: T'*=T,aygx or T, anygE-

The difference in the NHK and isokinetic Liouvilleans
considered in this augmented phase space is

danuk _
dt

—1

dayye _
dt

The last term in this equation has no effect on phase vari-
ables A(T') and B(T), since these variables are not func-
tions of ayyk. The phase-space compression factor is

So we see immediately that if the nonequilibrium steady-
state point is defined by the variables N, ¥, F,, and (A),
the analog of Eq. (15) also holds in this case, namely

lim (a(typg)?—{altg))=0. (33)

t—

From this point on the equivalence proof is formally
identical to that given above for the equivalence of isoen-
ergetic and isokinetic steady-state averages. It is also
clear the proof can easily be extended to cover the NHE
thermostat.

III. CALCULATIONS

In order to provide numerical support of the proof of
the equivalence of the different kinds of thermostats, we
simulated a WCA fluid subject to a Couette strain field.
The equations of motion for this system are [3]
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. _ P

4=—+n.yy

. (34)
pi=Fi_nx7/pyi_api ’

where n, is the unit vector in the x direction and
¥ =09u, /dy is the strain rate. In the absence of thermo-
stats, these equations give an exact description of adiabat-
ic planar Couette flow [3].

The expressions for a depend on the particular choice
of thermostat. The Gaussian isokinetic and isoenergetic
a’s [Egs. (4) and (5)] become

N
3 (Fi'pi —7Pxibyi)
ap =1 — (35)
Spi
i=1
and
N
— (PxiPyi —YiFyi)
- 7/21 PxiPyi —YiFxi —yp,
ap= ¥ = , (36)
> v 3 v
i=1 i=1
where P, is the xy element of the pressure tensor [3].

The Nosé-Hoover a’s are given by Egs. (29) and (30).

A WCA potential is a Lennard-Jones potential that has
been truncated at its minimum and shifted to make it
continuous:

g
r

4

12 6
— [gr_J ]+e, r<2/6g

u(r)= (37

0, r>2% .

The results reported here are given in reduced units. The
length unit is o, the energy unit is €, and the time unit is
to=0(m /e)!/2, where m is the mass of the particle. The
equations of motion have been solved by a fourth-order
gear predictor-corrector method with a time step of
0.002¢,,.

We chose a state point with a reduced density
no3=0.8442, a reduced temperature kz T /€ =0.722, and
a reduced shear rate y7;=1.0. We performed two
20000¢t, long simulations for a 108-particle system and
four 1000z, long simulations for a 2048-particle system.

In the small system we compared the pressure tensor
P, the temperature T, the internal energy H, the a’s and
the self-diffusion tensor D for a Gaussian isokinetic sys-
tem and a Gaussian isoenergetic system. In the isoener-
getic simulation the internal energy was set equal to the
average internal energy from the isokinetic simulation.

From the theory presented in Sec. II A the differences
in the averages of the phase functions for the pressure,
energy, and the a’s should all be at least of order 1/N.
The self-diffusion tensor for a shearing fluid has recently
been shown [9] to be the time integral of steady-state time
cross-correlation functions of the various Cartesian com-
ponents of the peculiar velocity [p,/m in (34)]. Thus a
comparison of the diffusion tensors computed under
different thermostats tests the predictions of the theory

TABLE 1. Comparison of thermostat for 108 WCA particles
(yto=1,kgT /e~0.722, no>=0.8442),

Property Gaussian const H, Gaussian const T
a 0.998+0.002 0.989+0.002
pP,, 1.785+0.003 1.7860.003
P, 7.181+0.004 7.182£0.005
P, 7.205+0.004 7.207+0.002
P, 6.833+0.001 6.832+0.005
D,, 0.0625+0.0003 0.0627+0.0003
D, 0.058140.0005 0.05824-0.0004
D, 0.0524+0.0002 0.0525+0.0002
n- 0.012+0.003 0.012+0.002
Mo 0.180+0.001 0.180+0.001

given in Sec. II B.

In Table I we compare the various properties of the
isokinetic and the isothermal 108-particle systems. The
viscosity coefficients 7, and %_ are defined as
— [P, — (P +Py,)/2]/2y and — (P, —P,)/2y. Al
the properties except the a’s agree very well within es-
timated statistical uncertainties. For 7_ this is not a very
convincing test, since the error bars are ~25%. Howev-
er, the larger relative bars for n_ are simply due to the
rather small difference between P, and P,,. For the oth-
er properties the relative errors are about 0.5% or less.
We omitted the off-diagonal elements of the self-diffusion
tensor because they are zero within error bars of 0.001.
Although the a’s do not agree within the estimated sta-
tistical uncertainties, they do agree to O(1/N)=0.01 as
predicted by theory.

The velocity autocorrelation functions whose Cartesian
elements form the self-diffusion tensor are thermostat in-
dependent to within absolute errors bars of £0.003. In
Fig. 1 we show a typical comparison of steady-state ve-
locity autocorrelation functions.

0.80 ——— —— . —— 0.008
0.60 | - 0.006
[ D
~, 0.40 4 0.004
-, r Q
oF [ -
© 0.20 4 0.002 <
[ (SN
0.00 | =d 0
20.20 el I | P -0.002
0.00 0.10 0.20 0.30 0.40 0.50

FIG. 1. In this graph we show the steady-state peculiar ve-
locity autocorrelation function C,,(2,)=/{p,(t,)p,(0))/m?2,
t=K, computed for the 108-particle WCA system described in
the text. The squares show, after expansion by a factor of 100,
the differences C,,(tg)— C,,(?x) between this correlation func-
tion and that computed at the corresponding times under the
isoenergetic thermostat. The differences between these results
are of the same size as the estimated statistical uncertainties in
the correlation functions themselves, +0.001.
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TABLE II

Comparison of thermostat for 2048 WCA particles (yto=1, kpT/e=0.722,

no?=0.8442). NH denotes Nosé-Hoover. For Nosé-Hoover thermostats, 7=3.3 in the isothermal

case and 2.0 in the isoenergetic case.

Gaussian NH Gaussian NH
Property const T const T const H, const H,
a 0.990+0.001 0.990+0.002 0.992+0.001 0.987+0.001
pP,, 1.808+0.001 1.808+0.003 1.81140.001 1.805+0.002
P, 7.226+0.002 7.226+0.004 7.2324+0.003 7.226+0.003
p, 7.269+0.003 7.27240.008 7.274+0.001 7.270+0.002
P, 6.912+0.002 6.910+0.003 6.9124+0.003 6.913+0.001
- 0.021+0.002 0.023+0.005 0.021+0.002 0.022+0.002
Mo 0.168+£0.002 0.170£0.002 0.171£0.002 0.168+0.001

We performed four simulations for a 2048-particle sys-
tem to compare all four different thermostats. The re-
sults are shown in Table II. Here all the properties also
agree within an error of £0.5%, including the a’s. Note
also that there are small but statistically significant
differences between the properties of the large system and
the small system. The magnitude of all the elements of
the pressure tensor and 7_ increase slightly. The value
of 775 changes by some 5%. The N dependence of 7, has
been noted before [10]. In spite of this N dependence, for
a given N there is good agreement between estimates ob-
tained for this sensitive property using each of the
different thermostats.

IV. DISCUSSION

We have shown that for mixing [8] systems where the
variables 4,4',...,B,B’,...,a,a’,... have no trivial
relations to the constants of the motion, steady-state time
averages { 4 ) and (B ) and steady-state time correlation
functions { A(0)B(¢)) formed under E, K, NHK, and
NHE thermostats are identical in the large system limit.
This is true even far into the nonlinear regime as long as
the system retains the mixing property as required in Eq.

(22). One should not think that these results imply that
the thermostat independence of both steady state aver-
ages and time correlation functions is observed for all
thermostats.

We recently introduced p thermostats [11], in which
the thermostatted equation of motion for the peculiar
momenta reads

. Psi _
Pai—F5i+DiFea_apT—|P5i|“, 8=x,y,z . (38)
Pail
For these thermostats, the phase-space compression fac-
tor is

z N
A=—anu 3 3 Ipslt. (39)
S=xi=1
Now the difference between the p Liouvillean of the p
and the isokinetic thermostat is such that the variables
that correspond to 6a and A4’ no longer have zero means
in the steady state defined by the values of N, V, F,, and
(A). Thus both steady-state averages and time correla-
tion functions differ under pu and isokinetic thermostats.

This has recently been observed in computer simulations
[11].
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